A new approach to mixed pixel classification of hyperspectral imagery based on extended morphological profiles

نویسندگان

  • Antonio J. Plaza
  • Pablo Martínez Cobo
  • Rosa M. Pérez
  • Javier Plaza
چکیده

This paper presents a new approach to the analysis of hyperspectral images, a new class of image data that is mainly used in remote sensing applications. The method is based on the generalization of concepts from mathematical morphology to multi-channel imagery. A new vector organization scheme is described, and fundamental morphological vector operations are de#ned by extension. Theoretical de#nitions of extended morphological operations are used in the formal de#nition of the concept of extended morphological pro#le, which is used for multi-scale analysis of hyperspectral data. This approach is particularly well suited for the analysis of image scenes where most of the pixels collected by the sensor are characterized by their mixed nature, i.e. they are formed by a combination of multiple underlying responses produced by spectrally distinct materials. Experimental results demonstrate the applicability of the proposed technique in mixed pixel analysis of simulated and real hyperspectral data collected by the NASA/Jet Propulsion Laboratory Airborne Visible/Infrared Imaging Spectrometer and the DLR Digital Airborne (DAIS 7915) and Re8ective Optics System Imaging Spectrometers. The proposed method works e;ectively in the presence of noise and low spatial resolution. A quantitative and comparative performance study with regards to other standard hyperspectral analysis methodologies reveals that the combined utilization of spatial and spectral information in the proposed technique produces classi#cation results which are superior to those found by using the spectral information alone. ? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Target Detection in Hyperspectral Imagery Based on Extended Morphological Profiles

Hyperspectral remote sensing increases the detectability of pixeland subpixel-sized targets by exploiting the finer detail in the spectral signatures. In this paper, we describe a new unsupervised algorithm for the detection of both full pixel and mixed pixel targets in hyperspectral imagery. The proposed method automatically resolves targets by using extended mathematical morphology operations...

متن کامل

Development of an Automatic Land Use Extraction System in Urban Areas using VHR Aerial Imagery and GIS Vector Data

Lack of detailed land use (LU) information and efficient data collection methods have made the modeling of urban systems difficult. This study aims to develop a novel hierarchical rule-based LU extraction framework using geographic vector and remotely sensed (RS) data, in order to extract detailed subzonal LU information, residential LU in this study. The LU extraction system is developed to ex...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

Sub-pixel classification of hydrothermal alteration zones using a kernel-based method and hyperspectral data; A case study of Sarcheshmeh Porphyry Copper Mine and surrounding area, Kerman, Iran

Remote sensing image analysis can be carried out at the per-pixel (hard) and sub-pixel (soft) scales. The former refers to the purity of image pixels, while the latter refers to the mixed spectra resulting from all objects composing of the image pixels. The spectral unmixing methods have been developed to decompose mixed spectra. Data-driven unmixing algorithms utilize the reference data called...

متن کامل

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2004